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.Outline

• start with the muon g − 2 as a concrete example

◦ measurements and the standard model differ by 3σ

◦ illustrates the relevant phenomenology

◦ allows me to explain our modified lattice method

• continue to illustrate our method with calculations of

◦ g−2 for the electron and tau, quite distinct from the muon

◦ ∆α(Q2), the QCD corrections to the running QED coupling

◦ higher-order QCD corrections, using gµ − 2 as an example

• ask me about: the Alder function D(Q2), αs, or muonic hydrogen
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Muon g−2



.Status of muon g− 2

• anomalous magnetic moment due solely to radiative corrections

aµ ≡
gµ − 2

2
=

α

2π
+O(α2)

• experimental measurement at BNL [Muon G-2, PRD 2006]

aex
µ = 1.16592080(63)× 10−3 [0.54 ppm]

• standard model estimate [Jegerlehner, Nyffeler Phys. Rept. 2009]

ath
µ = 1.16591790(65)× 10−3 [0.56 ppm]

• a 3.2σ difference might indicate physics beyond the standard model

aex
µ − ath

µ = 2.90(91)× 10−9
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.Future experiments

• planned or proposed experiments at Fermilab and J-PARC

σ(aex
µ ) = 6.3× 10−10 → 1.6× 10−10 [using FNAL]

• comparison would be dominated by theory errors (σ(ath
µ ) = 6.5·10−10)

σ(aex
µ − ath

µ ) = 9.1 · 10−10 → 6.7 · 10−10

• assuming the measurement remains consistent, i.e. ±2σ, gives

σ(aex
µ − ath

µ )/(aex
µ − ath

µ ) = 3.2→ (2.4− 6.3)

• either way, allowed/excluded BSM physics limited by theory errors

• improvements in the standard model estimate are highly desirable
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.Theory error budget

• standard model error is dominated by the QCD corrections

Contribution σth [10−10]
QCD-LO [α2] 5.3
QCD-NLO [α3] 3.9
QED/EW 0.2
Total 6.6

• σ(aex
µ )→ 1.6 · 10−10 will not probe higher QED/EW corrections

• naively, α4 QCD correction is not needed at the FNAL precision

• but the α2 and α3 QCD corrections must be improved by factor 4
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.QCD correction at leading order

• QCD contribution is expanded in α with nonperturbative coefficients

aQCD
µ = α2ahlo

µ + α3ahnlo
µ +O(α4)

• QCD corrections first occur at O(α2), only smaller than QED piece

µ µ

γ

γγ
q q

γ
q

2

• leading-order hadronic contribution (hlo) is in fact measured

ahlo
µ = α2

∫ ∞
4m2

π

ds

s
K lo(s/m2

µ)R(s) R(s) =
σ(γ∗→hadrons)

σ(γ∗→e+e−)

• thus the ”theory” calculation requires significant experimental input
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.Measurement of R(s)

• complicated analysis of O(100) channels/experiments

• improvement in σ(e+e− → hadrons) coming from many experiments

[Jegerlehner, Nyffeler Phys.Rept.477, 2009]
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.Phenomenological flavor dependence

• pheno. analysis uses RNf(s) to extract Nf = 2 and 3 contributions

RNf(s) = R(s)(
∑
Nf

Q2
f)/(

∑
N

Q2
f) 4m2

N ≤ s ≤ 4m2
N+1

π−π ρ,ω φ J/ψ

0 0.5 1 1.5 2 2.5 3 3.5
E [GeV]
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R
(E

)

• this is a simple/crude means of estimating importance of strange/charm

[R(E) given by F. Jegerlehner’s compilation of σ(e+e− → hadrons)]
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.Lattice calculation of ahlo
µ

• ahlo
µ can also be calculated directly in Euclidean space

µ µ

γ

γγ
q q

• vacuum polarization tensor is a simple two-point function

πµν(Q2) =
∫
d4X eiQ·(X−Y )〈Jµ(X)Jν(Y )〉 = (QµQν −Q2δµν)π(Q2)

• leading-order QCD contribution [Blum, PRL 2003]

ahlo
µ = α2

∫ ∞
0

dQ2

Q2
wlo(Q2/m2

µ)πR(Q2)

• πR(Q2) = π(Q2)− π(0) is finite with R(s) ∝ Imπ(−s+ iε)
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.Advantages of Euclidean space

• no complicated resonance structure, almost boring Q2 dependence
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• straightforward matching to perturbative QCD at large Q2
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.Problems with an external scale

• ahlo
l is made dimensionless at the expense of introducing ml

ahlo
l = α2

∫ ∞
0

dQ2

Q2
wlo(Q2/m2

l )πR(Q2)

• the lepton mass is completely unrelated to QCD scales

me ≈ 5.1 · 10−4 GeV mµ ≈ 0.11 GeV mτ ≈ 1.8 GeV

• introduces dependence on lattice spacing in dimensionless quantity

Q2

m2
l

=
1

a2

a2Q2

m2
l

=
1

a2

[Q2]latt

[m2
l ]GeV

• creates strong mPS dep., as seen in leading vector-meson contribution

al,V ∝ g2
V
m2
l

m2
V
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.Effective dimension

• deff captures the dimension of only the QCD scales

deff[X] = −
a

X

∂X

∂a

∣∣∣∣
g0=fixed

• for a standard QCD mass scale M , deff is the usual mass dimension

deff[Mn] = n

• however, it differs for a composite observable

deff[ m2
µ/m

2
V ] = deff[ 1/m2

V ] = −2

• for ahlo
µ , we have a nonperturbative but physical result

deff[ahlo
µ ] = −1.887 (5)
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.Eliminating the external scale

• this understanding leads to a class of modified observables

ahlo
µ = α2

∫ ∞
0

dQ2

Q2
wlo

Q2

H2
·
H2

phys

m2
µ

 πR(Q2)

• H is any hadronic scale and H(mPS → mπ) = Hphys, so

lim
mPS→mπ

ahlo
µ = ahlo

µ

• each ahlo
µ behaves like a proper dimensionless QCD quantity

deff[ahlo
µ ] = 0

• each ahlo
µ is composed of hadronic scales only
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.Modified method for ahlo
µ

• bottom to top: H = 1 (std. method), H = fV and H = mV
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• comparing to Nf = 2 piece important, full piece is 6.903 (53)·10−8

• our error of 2.8% is in the ballpark of the 0.8% currently used
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Electron and tau g−2



.Electron and tau g− 2

• high precision measurement of ge [Harvard, PRL 100:120801 (2008)]

ge/2 = 1.00115965218073 (28) [0.28 ppt]

• extraction of α from ge just becoming sensitive to QCD corrections

α−1 = 137.035999084 (51) [0.37 ppb]

• ge provides an very different probe of the QCD vacuum polarization

ahlo
e ≈

4

3
α2m2

e
dπR
dQ2

∣∣∣∣∣
Q2=0

deff[ahlo
e ] = −1.999984 (1)

• gτ is sensitive to larger Q2 and provides another test of our calculation

deff[ahlo
τ ] = −0.936 (13)

• gτ is much more difficult to measure directly but ahlo
τ is not
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.Calculation for all three charged leptons

• no QCD perturbation theory, complete nonperturbative calculation
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• the e is similar to the µ with our result at 2.8% versus 0.8%

• but for the τ we are doing better with 2.0% versus 3.3%
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Running of α



.QCD corrections to the QED coupling

• an effective QED coupling is normally defined by

α(Q2) =
α

1−∆α(Q2)
γγ

q
γγ

q q
γγ

q q

• the hadronic piece is again related to πR(Q2)

∆αhad(Q2) = 4παπR(Q2)

• precision of α is eroded by QCD corrections

σα

α
≈ 4 · 10−10 →

σα(M2
Z)

α(M2
Z)
≈ 3 · 10−4

• this impacts many SM predictions, for example the Gfitter fit for mH

mH = 44+62
−43 GeV without ∆α(M2

Z)

mH = 96+31
−24 GeV with ∆α(M2

Z)
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.Modified definition of ∆αhad(Q2)

• treat Q2 as an external scale and similarly define a new observable

• M0 = 2.5 GeV is a common matching point in pheno. work
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• our 2.1% accuracy is nearly competetive with the currently used 1.1%
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.Hadronic running of the QED coupling

• lattice artifacts only show up slowly for Q2 & 7 GeV2
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f
=2
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f
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• αs from π(Q2) used to determine ∆α(M2
Z)−∆α(M2

0 ) at 5 loops

∆α(M2
Z) = ∆α(M2

0 ) + ∆α(M2
Z)−∆α(M2

0 ) = 0.01715 (42)
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Higher order corrections



.NLO QCD correction to gµ− 2

• calculated all three classes of 17 NLO diagrams involving πR(Q2)

µ µ

γ(a)

µ µ

γ

e

(b)

µ µ

γ(c)

• complete non-pert. NLO (α3) correction, excluding light-by-light

a
nlo,hvp
µ = −7.99 (20) · 10−10 Lattice, Nf = 2

a
nlo,hvp
µ = −7.78 (16) · 10−10 Pheno, Nf = 2

• light-by-light corrections require a different technology

µ µ

γ γ

µ µ

• ongoing work by Blum et. al, QCDSF, JLQCD

a
nlo,lbl
µ = 8 (4) · 10−10 ↔ 12 (4) · 10−10 Pheno
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.Outlook for muon g− 2

• a precision of 3% (2%) currently achieved for alo
µ (∆α) for Nf = 2

• our Nf = 4 calculation, aiming at 3% is starting now

• 1% with Nf = 4 may be feasible for alo
µ , would match BNL precision

• FNAL/JPARC precisions would require another factor of 3 for alo
µ

• anlo,vp
µ with Nf = 4 should be possible at FNAL/JPARC precisions

• anlo,lbl
µ is an active research program, more ideas are still coming

• there are now 6 lattice groups working on the muon g − 2
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Extra slides



.Adler function

• the Adler function eliminates the UV divergence by a derivative

D(Q2) = 12π2Q2dπR
dQ2

→ D(Q2) = D(Q2/H2
phys ·H

2)

• this makes D(Q2) much more sensitive to cut-off effects
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D
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Pheno, N
f
=2

Lattice, N
f
=2

LO PQCD, N
f
=2

α
(2)
s (2 GeV2) = 0.263 (16)

Λ(2) = 222 (27) MeV

• can determine αs and Λ at each Q2 (2 GeV2 used) without OPE
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.Muonic hydrogen

• the LO QCD corrections to the 2P/2S splitting in µ− p

∆Ehlo
hfs = 2πα5µ3 dπR

dQ2

∣∣∣∣∣
Q2=0

• this is closely related to ahlo
e and similarly tests the low Q2 region
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Lattice, Nf = 2

∆Ehlo
hfs = 9.06 (29) µeV

Pheno, Nf = 2

∆Ehlo
hfs = 9.17 (07) µeV

• small compared to current 5σ discrepancy, only rough checks needed

Eex − Eth = 0.316 (63) meV

22/20



.Definition of ahlo
µ for a > 0

• the large Q2 behavior is parameterized by fitting to

πR(Q2) = c+ lnQ2 ·
∑
n
anQ

2n

• to be precise, we fix the definition at non-zero lattice spacing with

∫ ∞
0

dQ2 →
∫ Q2

uv

0
dQ2 Q2

uv = 16/a2

• the integral is convergent, so this is just a choice of cut-off effects

• this choice does not require QCD perturbation theory

• this definition does not force us to introduce a lattice spacing

• this last point is important given that deff[aµ] ≈ −2
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.Definition of ahlo
µ for L <∞

• define πR for low Q2 by including the lowest meson and fitting the an

πR(Q2) =
5

9
g2
V

Q2

Q2 +m2
V

+
∑
n
anQ

2n

• fit ensures that πR(Q2) matches lattice calculation for accessible Q2

• extrapolation provides a well-defined finite-volume definition

• explicit vector-meson term is systematically reabsorbed as L increases

5

9
g2
V

Q2

Q2 +m2
V

=
∑
n
bnQ

2 for Q2 < m2
V

• this is not a systematic error but a proper finite-volume definition

• a practical matter of explicitly verifying controlled finite-size effects
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.Details on the effective dimension

• deff attempts to capture the dimensionality of only the QCD scales

deff[X] = −
a

X

∂X

∂a

∣∣∣∣
g0=fixed

• for a standard mass scale M , definition is the usual mass dimension

deff[Mn] = −
a

Mn

∂

∂a

(
1

an
M̂n(g0)

)
= −

a

Mn
M̂n(g0)

∂

∂a

(
1

an

)
= n

• however, it differs for a composite observable

deff

m2
µ

m2
V

 = deff

[
1

m2
V

]
= −2

• for aµ, we have an expression that must be evaluated on the lattice

deff[aµ] = −2

(∫
dQ2

Q2
w(Q2/m2

µ)Q2dπR
dQ2

)
/

(∫
dQ2

Q2
w(Q2/m2

µ)πR

)
< 0

• you can easily prove that deff[aµ]→ −2 (0) for mµ → 0 (∞)
25/20



.Vector meson contribution to aµ

• the vector-mesons dominate the hadronic contribution to aµ

γγ
q q

γ γ
ρ

• on general grounds we expect any model to give

aµ,V ≈ c
m2
µ

m2
V

• tree-level chiral perturbation theory gives

aµ,V = α2g2
V f(m2

µ/m
2
V ) =

2

3
α2g2

V

m2
µ

m2
V

+O(m4
µ/m

4
V )

• this allows us to model the vector meson contribution to ahlo
µ
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.Electromagnetic coupling of vector-meson

• dimensionless quantities are typically better calculated
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• result for gV represents quantitative success for our calculation

27/20



.Mass of vector-meson

• dimensionful quantities are sensitive to the overall scale setting
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• phenomenological fit includes the PDG value of mρ
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.Renormalization of QCD + QED

• introduce a variable muon mass mµ and quark mass mq

0 20 40 60 80 100
m

q
 [MeV]

100

1000

m
µ
 [

M
eV

] physical point
m

µ
 = m

µ

m
µ
 = m

µ
 / m

q
  m

q

a
µ

hvp
 contours

• both paths, with mµ or mµ/mq fixed, define valid physical limits

• but mµ = (mµ/mq)mq follows a contour of ahlo
µ in pQCD
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.Hadronic scheme

• introduce variable muon mass mµ and pseudo-scalar mass mPS
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• curve mµ = (mµ/mρ)mV is implicitly defined so that mµ → mµ

• contours from VMD model (ask me) matched to the lattice calc.
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.Phenomenological description of ahlo
µ

• can combine model expectations with our calc. of gV and mV
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• apparently strong mPS dependence of mV is reflected in ahlo
µ
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.Standard model predictions and ∆αhad

• precision of α (σα/α ≈ 4 · 10−10) is eroded by QCD corrections

σα(MZ)

α(MZ)
≈ 3 · 10−4 σGF

GF
≈ 9 · 10−6 σMZ

MZ
≈ 2 · 10−5

• this impacts many SM predictions, for example mH
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.Modified definition of ∆α(Q2)

• a change of variables gives ahvp
µ as

ahvp
µ = α2

∫ ∞
0

dQ2

Q2
w(Q2/m2

µ)πR
(
Q2/H2

phys ·H
2
)

• this suggests treating Q2 as an external scale like m2
µ and defining

∆αhad(Q2) = 4παπR
(
Q2/H2

phys ·H
2
)

• this choice for πR(Q2) then defines all other observables consistently
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.Running of α

• includes only the QCD corrections, remember full α−1(MZ) ≈ 129
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• future work will need matching to pQCD and/or larger Q2
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.Muonic hydrogen

• the LO QCD corrections to the 2P/2S splitting in µ− p

∆Ehlo
hfs = 2πα5µ3 dπR

dQ2

∣∣∣∣∣
Q2=0

• this is closely related to ahlo
e and similarly tests the low Q2 region
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Lattice, Nf = 2

∆Ehlo
hfs = 9.06 (29) µeV

Pheno, Nf = 2

∆Ehlo
hfs = 9.17 (07) µeV

• small compared to current 5σ discrepancy, only rough checks needed

Eex − Eth = 0.316 (63) meV
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.Isospin violating corrections

• by varying from m0
π to m+

π , the standard method changes by

∆mu 6=md
= 9.0 · 10−11

• by taking the maximum variation under m0
π to m+

π and ρ0 to ρ+

∆mu 6=md
= 8.0 · 10−11

• this suggests isospin violating effects are potentially O(10−10)
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